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Image Super-Resolution as a Defense Against
Adversarial Attacks

Aamir Mustafa, Salman H. Khan, Munawar Hayat, Jianbing Shen and Ling Shao

Abstract—Convolutional Neural Networks have achieved sig-
nificant success across multiple computer vision tasks. However,
they are vulnerable to carefully crafted, human-imperceptible
adversarial noise patterns which constrain their deployment in
critical security-sensitive systems. This paper proposes a compu-
tationally efficient image enhancement approach that provides
a strong defense mechanism to effectively mitigate the effect
of such adversarial perturbations. We show that deep image
restoration networks learn mapping functions that can bring
off-the-manifold adversarial samples onto the natural image
manifold, thus restoring classification towards correct classes.
A distinguishing feature of our approach is that, in addition to
providing robustness against attacks, it simultaneously enhances
image quality and retains models performance on clean images.
Furthermore, the proposed method does not modify the classifier
or requires a separate mechanism to detect adversarial images.
The effectiveness of the scheme has been demonstrated through
extensive experiments, where it has proven a strong defense in
gray-box settings. The proposed scheme is simple and has the fol-
lowing advantages: (1) it does not require any model training or
parameter optimization, (2) it complements other existing defense
mechanisms, (3) it is agnostic to the attacked model and attack
type and (4) it provides superior performance across all popular
attack algorithms. Our codes are publicly available at https://
github.com/aamir-mustafa/super-resolution-adversarial-defense.

Index Terms—Adversarial attacks, gray-box setting, CNNs,
image super-resolution, image denoising.

I. INTRODUCTION

Success of Convolutional Neural Networks (CNNs) over
the past several years has lead to their extensive deployment
in a wide range of computer vision tasks [1], [2], including
image classification [3]–[5], object detection [6], [7], semantic
segmentation [8], [9] and visual question answering [10]. Not
only limited to that, CNNs now play a pivotal role in designing
many critical real-world systems, including self-driving cars
[11] and models for disease diagnosis [12], which necessitates
their robustness in such situations. Recent works [13]–[15],
however, have shown that CNNs can easily be fooled by
distorting natural images with small, well-crafted, human-
imperceptible additive perturbations. These distorted images,
known as adversarial examples, have further been shown to
be transferable across different architectures, e.g an adversarial
example generated for an Inception v-3 model is able to fool
other CNN architectures [13], [16].
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a)  b)

Fig. 1: a) A 3D plot showing adversarial image features (red) and the
corresponding clean image features (green). b) On the right, we show the
features of the corresponding defended images (blue). The plot clearly shows
that the super-resolution operation remaps the adversarial images to the natural
image manifold, which otherwise lie off manifold. (100 randomly selected
features projected to 3D space using principal component analysis are shown
for better visualization)

Owing to the critical nature of security-sensitive CNN appli-
cations, significant research has been carried out to devise de-
fense mechanisms against these vulnerabilities [17]–[28]. We
can broadly categorize these defenses along two directions: the
first being model-specific mechanisms, which aim to regularize
a specific model’s parameters through adversarial training
or parameter smoothing [17], [19], [20], [27], [29]. Such
methods often require differentiable transformations that are
computationally demanding. Moreover these transformations
are vulnerable to further attacks, as the adversaries can circum-
vent them by exploiting the differentiable modules. The second
category of defenses are model-agnostic. They mitigate the
effect of adversarial perturbations in the input image domain
by applying various transformations. Examples of such tech-
niques include JPEG compression [30], [31], foveation-based
methods, which crop the image background [32], random pixel
deflection [26] and random image padding & re-sizing [18].
Compared with differentiable model-specific methods, most
of the model-agnostic approaches are computationally faster
and carry out transformations in the input domain, making
them more favorable. However, most of these approaches lose
critical image content when removing adversarial noise, which
results in poor classification performance on non-attacked
images.

This paper proposes a model-agnostic defense mechanism
against a wide range of recently proposed adversarial attacks
[14], [15], [33]–[36] and does not suffer from information loss.
Our proposed defense is based upon image super-resolution
(SR), which selectively adds high frequency components to
an image and removes noisy perturbations added by the
adversary. We hypothesize that the learned SR models are
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generic enough to remap off-the-manifold samples onto the
natural image manifold (see Fig. 1). The effect of added
noise is further suppressed by wavelet domain filtering and
inherently minimized through a global pooling operation on
the higher resolution version of the image. The proposed image
super-resolution and wavelet filtering based defense results in
a joint non-differentiable module, which can efficiently recover
the original class labels for adversarially perturbed images.

The main contributions of our work are:

1) Through extensive empirical evaluations, we show image
super-resolution to be an effective defense strategy against
a wide range of recently proposed state-of-the-art attacks
in the literature [14], [15], [33]–[36]. Using Class Ac-
tivation Map visualizations, we demonstrate that super-
resolution can successfully divert the attention of the
classifier from random noisy patches to more distinctive
regions of the attacked images (see Fig. 8 and 9).

2) Super-resolving an adversarial image projects it back
to the natural image manifold learned by deep image
classification networks.

3) Unlike existing image transformation based techniques,
which introduce artifacts in the process of overcoming
adversarial noise, the proposed scheme retains critical
image content, and thus minimally impacts the classifier’s
performance on clean, non-attacked images.

4) The proposed defense mechanism tackles adversarial at-
tacks with no knowledge of the target model’s architecture
or parameters. This can easily complement other existing
model-specific defense methods.

Closely related to our approach are the Defense-GAN [37]
and MagNet [25], which first estimate the manifold of clean
data to detect adversarial examples and then apply a mapping
function to reduce adversarial noise. Since they use generator
blocks to re-create images, their studied case is restricted
to small datasets (CIFAR-10, MNIST) with low-resolution
images. In contrast, our approach does not require any prior
detection scheme and works for all types of natural images
with a more generic mapping function.

Below, we first formally define the underlying problem
(Sec. II-A), followed by a brief description of existing ad-
versarial attacks (Sec. II-B) and defenses (Sec. II-C). We
then present our proposed defense mechanism (Sec. III). The
effectiveness of our proposed defense is then demonstrated
through extensive experiments against state-of-the art adver-
sarial attacks [14], [15], [33]–[36] and comparison with other
recently proposed model-agnostic defenses [18], [26], [38],
[39] (see Section IV).

II. BACKGROUND

Here we introduce popular adversarial attacks and defenses
proposed in the literature, which form the basis of our eval-
uations and are necessary for understanding our proposed
defense mechanism. We only focus on adversarial examples
in the domain of image classification, though the same can be
crafted for various other computer vision tasks as well.

A. Problem Definition

Let xc ∈ Rm denote a clean image sample and yc
its corresponding ground-truth label, where the subscript c
emphasizes that the image is clean. Untargeted attacks aim
to misclassify a correctly classified example to any incor-
rect category. For these attacks, for a given image classifier
C : Rm → {1, 2, · · · , k}, an additive perturbation ρ ∈ Rm
is computed under the constraint that the generated adver-
sarial example xadv = xc + ρ looks visually similar to the
clean image xc i.e., d(xc,xadv) ≤ ε for some dissimilarity
function d(., .) and the corresponding labels are unequal i.e
C(xc) 6= C(xadv). Targeted attacks change the correct label
to a specified incorrect label, i.e., they seek xadv such that
C(xadv) = ytar, where ytar is a specific class label such that
ytar 6= yc. An attack is considered successful for an image
sample xc if it can find its corresponding adversarial example
xadv under the given set of constraints. In practice d(., .) is
the `p norm between a clean image and its corresponding
adversarial example, where p ∈ {1, · · · ,∞}.

B. Adversarial Attacks

(a) Fast Gradient Sign Method (FGSM): This is one of
the first attack methods, introduced by Goodfellow et al. [14].
Given a loss function L(xc + ρ,yc; θ), where θ denotes the
network parameters, the goal is to maximize the loss as:

argmax
ρ∈Rm

L(xc + ρ,yc; θ). (1)

FGSM is a single step attack which aims to find the
adversarial perturbations by moving in the opposite direction
to the gradient of the loss function w.r.t. the image (∇):

xadv = xc + ε.sign(∇(L(xc,yc; θ)). (2)

Here ε is the step size, which essentially restricts the `∞ norm
of the perturbation.

(b) Iterative Fast Gradient Sign Method (I-FGSM) is an
iterative variant of FGSM, introduced by Kurakin et al. [15].
I-FGSM performs the update as follows:

xm+1 = clipε(xm + α.sign(∇(L(xm,yc; θ))), (3)

where m ∈ [0,M ], x0 = xc and after M iterations, xadv =
xM .

(c) Momentum Iterative Fast Gradient Sign Method
(MI-FGSM), proposed by Dong et al. [33], is similar to I-
FGSM with the introduction of an additional momentum term
which stabilizes the direction of gradient and helps in escaping
local maxima. MI-FGSM is defined as follows:

gm+1 = µ.gm +
∇L(xm,yc; θ)

‖ ∇(L(xm,yc; θ)) ‖1
(4)

xm+1 = clipε(xm + α.sign(gm+1)), (5)

where µ is the decay factor, x0 = xc and xadv = xM after
M iterations.

(d) DeepFool was proposed by Moosavi-Dezfooli et al. [34]
and aims to minimize the `2 norm between a given image
and its adversarial counterpart. The attack assumes that a
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given image resides in a specific class region surrounded by
the decision boundaries of the classifier. The algorithm then
iteratively projects the image across the decision boundaries,
which is of the form of a polyhydron, until the image crosses
the boundary and is misclassified.

(e) Carlini and Wagner (C&W) [35] is a strong iterative
attack that minimizes an auxiliary variable ζ as follows:

min
ζ
‖ 1

2
(tanh (ζ) + 1)− xc ‖ +c.f(

1

2
(tanh ζ + 1)), (6)

where 1
2 (tanh (ζ) + 1)− xc is the perturbation ρ and f(.) is

defined as

f(xadv) = max(Z(xadv)yc−max{Z(xadv)n : n 6= yc},−k).
(7)

Here Z(xadv)n are the logit values corresponding to a class
n and k is the margin parameter. The C&W attack works for
various `p norms.

(f) DI2FGSM and MDI2FGSM [36]: The aforementioned
attacks can be grouped into: single-step and iterative attacks.
Iterative attacks have a higher success rate under white-box
conditions, but they tend to overfit, and generalize poorly
across black-box settings. In contrast, single-step attacks
generate perturbed images with fairly improved transferabil-
ity but a lower success rate in white-box conditions. The
recently proposed Diverse-Input-Iterative-FGSM (DI2FGSM)
and Momentum-Diverse-Input-Iterative-FGSM (MDI2FGSM)
[36] methods claim to fill in this gap and improve the
transferability of iterative attacks. DI2FGSM performs random
image re-sizing and padding as image transformation τ(.), thus
creating an augmented set of images, which are then attacked
using I-FGSM as:

xm+1 = clipε(xm + α.sign(∇(L(τ(xm; p),yc; θ))). (8)

Here p is the ratio of transformed images to total number of
images in the augmented dataset. MDI2FGSM is a variant,
which incorporates the momentum term in DI2FGSM to
stabilize the direction of gradients. The overall update for
MDI2FGSM is similar to MI-FGSM, with Equation 4 being
replaced by:

gm+1 = µ.gm +
∇L(τ(xm; p),yc; θ)

‖ ∇(L(τ(xm; p),yc; θ)) ‖1
. (9)

C. Adversarial Defenses

Tremer et al. [20] proposed ensemble adversarial training,
which results in regularizing the network by softening the
decision boundaries, thereby encompassing nearby adversarial
images. Defensive distillation [17] improves the model robust-
ness in an essentially similar fashion by retraining a given
model using soft labels acquired by a distillation mechanism
[40]. Kurakin et al. [19] augmented a training batch of clean
images with their corresponding adversarial images to improve
robustness. Moosavi-Dezfooli et al. [41], however, showed
that adversarial examples can also be generated for an already
adversarially trained model.

Recently, some defense methods have been proposed in
input image transformation domain. Data compression (JPEG

image compression) as a defense was studied by [30], [31].
JPEG compression deploys a discrete cosine transform to
suppress the human-imperceptible, high frequency noise com-
ponents. Guo et al. [39], however, noted that JPEG com-
pression alone is far from being an effective defense. They
proposed image transformations using quilting and Total Vari-
ance Minimization (TVM). Feature squeezing [42] reduces
the image resolution either by using bit depth reduction or
smoothing filters to limit the adversarial space. A foveation
based method was proposed by Luo et al. [32], which shows
robustness against weak attacks like L-BFGS [13] and FGSM
[14]. Another closely related work to ours is that of Prakash
et al. [26], which deflects attention by carefully corrupting
less critical image pixels. This introduces new artifacts which
reduce the image quality and can result in misclassification.
To handle such artifacts, BayesShrink denoising in the wavelet
domain is used. It has been shown that denoising in the wavelet
domain yields superior performance than other techniques
such as bilateral, an-isotropic, TVM and Wiener-Hunt de-
convolution [26]. Another closely related work is that of Xie et
al. [18], which performs image transformations by randomly
re-sizing and padding an image before passing it through a
CNN classifier. Xie et al. [28] showed that adding adversarial
patterns to a clean image results in noisy activation maps. A
defense mechanism was proposed to perform feature denoising
using non-local means, which requires retraining the model
end-to-end with adversarial data augmentation. One of the
main shortcomings of the aforementioned defense techniques
(JPEG compression, PD and foveation based method) is that
the transformations degrade the image quality, which results
in a loss of significant information from images.

III. PROPOSED PERTURBED IMAGE RESTORATION

Existing defense mechanisms against adversarial attacks aim
to reduce the effects of added perturbations so as to recover the
correct image class. Defenses are being developed along two
main directions: (i) modifying the image classifier C(.) to C′

(.)
such that it recovers the true label for an adversarial example,
i.e. C′

(xadv) = C(xc) = yc; and (ii) transforming the input
image such that C(xc) = C(T (xadv)) = yc, where T (.) is an
image transformation function. Ideally, T (.) should be model-
agnostic, complex and a non-differentiable function, making it
harder for the adversary to circumvent the transformed model
by back-propagating the classifier error through it.

Our proposed approach, detailed below, falls under the
second category of defense mechanisms. We propose to use
image restoration techniques to purify perturbed images. The
proposed approach has two components, which together form
a non-differentiable pipeline that is difficult to bypass. As an
initial step, we apply wavelet denoising to suppress any noise
patterns. The central component of our approach is the super-
resolution operation, which enhances the pixel resolution while
simultaneously removing adversarial patterns. Our experi-
ments show that image super-resolution alone is sufficient to
reinstate classifier beliefs towards correct categories; however,
the second step provides added robustness since it is a non-
differentiable denoising operation.



4

Clean Image (299 x 299) 

Adversarial Image 
(299 x 299)
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Fig. 2: Super-resolution
as a Defense Against
Adversarial Attacks:
The figure illustrates
mapping of a sample
image from low-
resolution to its high-
resolution manifold.
Adversarial images,
which otherwise lie off
the manifold of natural
images, are mapped in
the same domain as the
clean natural images,
thereby recovering their
corresponding true
labels. (Best seen in
color and enlarged)

In the following section, we first explain the super-resolution
approach (Sec. III-A) followed by a description of denois-
ing method (Sec. III-B). Finally, we summarize the defense
scheme in Sec. III-C.

A. Super Resolution as a Defense Mechanism
Our goal is to defend a classification model C(·) against

the perturbed images xadv generated by an adversary. Our
approach is motivated by the manifold assumption [43],
which postulates that natural images lie on low-dimensional
manifolds. This explains why low-dimensional deep feature
representations can accurately capture the structure of real
datasets. The perturbed images are known to lie off the low-
dimensional manifold of natural images, which is approxi-
mated by deep networks [44]. Gong et al. in [45] showed
that a simple binary classifier can successfully separate off-
the-manifold adversarial images from clean ones and thereby
concluded that adversarial and clean data are not twins, despite
appearing visually identical. Fig. 2 shows a low-dimensional
manifold of natural images. Data points from a real-world
dataset (say ImageNet) are sampled from a distribution of
natural images and can be considered to lie on-the-manifold.
Such images are referred to as in-domain [46]. Corrupting
these in-domain images by adding adversarial noise takes the
images off-the-manifold. A model that learns to yield images
lying on-the-manifold from off-the-manifold images can go a
long way in detecting and defending against adversarial at-
tacks. We propose to use image super-resolution as a mapping
function to remap off-the-manifold adversarial samples onto
the natural image manifold and validate our proposal through
experimentation (see Sec. IV-A). In this manner, robustness
against adversarial perturbations is achieved by enhancing the
visual quality of images. This approach provides remarkable
benefits over other defense mechanisms that truncate critical
information to achieve robustness.

Super-resolution Network: A required characteristic for
defense mechanisms is the ability to suppress fraudulent

perturbations added by an adversary. Since these perturbations
are generally high-frequency details, we use a super-resolution
network that explicitly uses residual learning to focus on such
details. These details are added to the low-resolution inputs
in each residual block to eventually generate a high-quality,
super-resolved image. The network considered in this work
is the Enhanced Deep Super-Resolution (EDSR) [47] network
(trained on the DIVerse 2K resolution image (DIV2K) dataset
[48]), which uses a hierarchy of such residual blocks. While
our proposed approach achieves competitive performance with
other super-resolution and up-sampling techniques, we demon-
strate the added efficacy of using residual learning based
EDSR model through extensive experiments (see Sec. IV).

Effect on Spectral Distribution: The underlying assump-
tion of our method is that deep super-resolution networks learn
a mapping function that is generic enough to map the perturbed
image onto the manifold of its corresponding class images.
This mapping function learned with deep CNNs basically
models the distribution of real non-perturbed image data. We
validate this assumption by analyzing the frequency-domain
spectrum of the clean, adversarial and recovered images in
Fig. 3. It can be observed that adversarial image contains
high frequency patterns and the super-resolution operation
further injects high frequency patterns to the recovered image.
This achieves two major benefits: first, the newly added high-
frequency patterns smooth the frequency response of the image
(column 5, Fig. 3) and, second, the super-resolution destroys
the adversarial patterns that seek to fool the model.

Fig. 3 also shows that the super-resolved image maintains
the high-frequency details close to the original (clean) input
image. Still, it is quite different from the clean image, e.g.,
compare the magnitude spectrum at higher frequencies for the
recovered and clean image, which shows a much smoother
spread of frequencies in the recovered image. The exact
difference between clean and recovered images is shown in
the bottom left corner of Fig. 3, which illustrates the fact that
the recovered image is relatively cleaner but has more high-
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Fig. 3: Effect of super-
resolution on the frequency
distribution of a sample im-
age. A magnitude spectrum
for each image is generated
using discrete cosine trans-
form (DCT). After remov-
ing low-frequency compo-
nents from the image spec-
trum (i.e. high pass fil-
tering) inverse DCT is
used to visualize the high-
frequency components. The
IDCT of recovered im-
age shows selective high-
frequency components that
are added by image super-
resolution. The adversar-
ial perturbations were pro-
duced using MDI2FGSM
with ε = 16.

Sample Image Clean RecoveredAdversarial

Fig. 4: Feature map in the res3 block of an ImageNet-trained ResNet-
50 for a clean image, its adversarial counterpart and the recovered
image. The adversarial perturbation was produced using FGSM with
ε = 10. Image super-resolution essentially nullifies the effect of
adversarial patterns added by the adversary.

frequency details compared to the original image. Comparing
the original noise signal (top left corner in Fig. 3) and the
left-over noise in the recovered image (bottom left corner in
Fig. 3), we can observe that the SR network discards most of
the noisy perturbations; however a sparse trace of noise is still
present. Also, the SR network reinforces the high-frequency
changes along the salient boundaries in the image (notice the
response along the bird boundaries).

Effect of Adversarial Perturbations on Feature Maps:
Adversarial attacks add small perturbations to images, which
are often imperceptible to the human eye or generally per-
ceived as small noise in an image in the pixel space. However,
this adversarial noise amplifies in the feature maps of a
convolutional network, leading to substantial noise [28]. Fig. 4
shows the feature maps for three clean images, their adver-
sarial counterparts and the defended images chosen from the
ResNet-50 res3 block after the activation layer. Each feature
map is of 28× 28 dimensions. The features for a clean image
sample are activated only at semantically significant regions of
the image, whereas those for its adversarial counterpart seem

to be focused at semantically irrelevant regions as well. Xie et
al [28] performed feature denoising using non-local means
[49] to improve the robustness of convolutional networks.
Their model is trained end-to-end on adversarially perturbed
images. Our defense technique recovers the feature maps (Cols
2 and 4, Fig. 4) without requiring any model retraining or
adversarial image data augmentation.

Advantages of Proposed Method: Our proposed method
offers a number of advantages. (a) The proposed approach
is agnostic to the attack algorithm and the attacked model.
(b) Unlike many recently proposed techniques, which degrade
critical image information as part of their defense, our pro-
posed method improves image quality while simultaneously
providing a strong defense. (c) The proposed method does not
require any learning and only uses a fixed set of parameters
to purify input images. (d) It does not hamper the classifier’s
performance on clean images. (e) Due to its modular nature,
the proposed approach can be used as a pre-processing step in
existing deep networks. Furthermore, our purification approach
is equally applicable to other computer vision tasks beyond
classification, such as segmentation and object detection.

B. Wavelet Denoising

Since all adversarial attacks add noise to an image in
the form of well-crafted perturbations, an efficient image
denoising technique can go a long way in mitigating the effect
of these perturbations, if not removing them altogether. Image
denoising in the spatial or frequency domain causes a loss of
textural details, which is detrimental to our goal of achieving
clean image-like performance on denoised images. Denosing
in the wavelet domain has gained popularity in recent works.
It yields better results than various other techniques including
bilateral, anisotropic, Total Variance Minimization (TVM) and
Wiener-Hunt de-convolution [26]. The main principle behind
wavelet shrinkage is that Discrete Wavelet Transform (DWT)
of real world signals is sparse in nature. This can be exploited
to our advantage since the ImageNet dataset [50] contains
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images that capture real-world scenes and objects. Consider
an adversarial example xadv = xc+ρ; the wavelet transform
of xadv is a linear combination of the wavelet transform of
the clean image and noise. Unlike image smoothing, which
removes the higher frequency components in an image, DWTs
of real world images have large coefficients corresponding
to significant image features and noise can be removed by
applying a threshold on the smaller coefficients.

1) Thresholding: The thresholding parameter determines
how efficiently we shrink the wavelet coefficients and remove
adversarial noise from an image. In practice, two types of
thresholding methods are used: a) Hard thresholding and b)
Soft thresholding. Hard thresholding is basically a non-linear
technique, where each coefficient (x̂) is individually compared
to a threshold value (t), as follows:

D(x̂, t) =

{
x̂ if |x̂| ≥ t
0 otherwise.

Reducing the small noisy coefficients to zero and then carrying
out an inverse wavelet transform produces an image which
retains critical information and suppresses the noise. Unlike
hard thresholding where the coefficients larger than t are fully
retained, soft thresholding modifies the coefficients as follows:

D(x̂, t) = max(0, 1− t

|x̂|
)x̂.

In our method, we use soft-thresholding as it reduces abrupt
sharp changes that otherwise occur in hard thresholding. Also,
hard- hresholding over-smooths an image, which reduces the
classification accuracy on clean non-adversarial images.

Choosing an optimal threshold value t is the underlying
challenge in wavelet denoising. A very large threshold value
means ignoring larger wavelets, which results in an over-
smoothed image. In contrast, a small threshold allows even
the noisy wavelets to pass, thus failing to produce a denoised
image after reconstruction. Universal thresholding is employed
in VisuShrink [51] to determine the threshold parameter tvs
for an image X with n pixels as tvs = σρ

√
2 ln (n), where

σρ is an estimate of the noise level. BayesShrink [52] is
an efficient method for wavelet shrinkage which employs
different thresholds for each wavelet sub-band by considering
Gaussian noise. Suppose x̂adv = x̂c + ρ̂ is the wavelet
transform of an adversarial image, since x̂c and ρ̂ are mutually
independent, the variances σ2

xadv
, σ2

xc
and σ2

ρ of x̂adv , x̂c, ρ̂,
respectively, follow: σ2

xadv
= σ2

xc
+ σ2

ρ. A wavelet sub-band
variance for an adversarial image is estimated as:

σ2
xadv

=
1

M

M∑
m=1

W 2
m,

where W 2
m are the sub-band wavelets and M is the total

number of wavelet coefficients in a sub-band. The threshold
value for BayesShrink soft-thresholding is given as:

tbs =

{
σ2
ρ/σxc if σ2

ρ < σ2
xadv

max(|Wm|) otherwise.

In our experiments, we explore both VisuShrink and
BayesShrink soft-thresholding and find the latter to perform
better and provide visually superior denoising.

C. Algorithmic Description

An algorithmic description of our end-to-end defense
scheme is provided in Algorithm 1. We first smooth the effect
of adversarial noise using soft wavelet denoising. This is
followed by employing super resolution as a mapping function
to enhance the visual quality of images. Super resolving an
image maps the adversarial examples to the natural image
manifold in high-resolution space, which otherwise lie off-
the-manifold in low-resolution space. The recovered image is
then passed through the same pre-trained models on which
the adversarial examples were generated. As can be seen,
our model-agnostic image transformation technique is aimed
at minimizing the effect of adversarial perturbations in the
image domain, with little performance loss on clean images.
Our technique causes minimal depreciation in the classification
accuracy of non-adversarial images.

Algorithm 1: Defending Against Adversarial Attacks with Image
Restoration (Wavelet Denoising + Super Resolution)

/* Image Denoising */
Input: Corrupted image xadv = xc + ρ
Output: Denoised image x

′
= D(xadv)

1 Convert the RGB image to Y CbCr color space, where Y and Cb, Cr

represent luminance and chrominance respectively.
2 Convert the image to wavelet domain X̂adv = X̂c + ρ̂ using discrete

wavelet transform.
3 Remove noisy wavelet coefficients using BayesShrink soft-thresholding.
4 Invert the shrunken wavelet coefficients using Inverse Wavelet

Transform (IWT).
5 Revert the image back to RGB.

/* Image Super-Resolution */

Input: Denoised image x
′
= D(xadv)

Output: Super Resolved Image xt =M(x
′
)

6 Map adversarial samples back to natural image manifold using deep
super resolution network: M(·).

7 Forward the recovered images to the attacked model for correct
prediction.

IV. EXPERIMENTS

Models and Datasets: We evaluate our proposed defense
and compare it with existing methods for three different
classifiers: Inception-v3, ResNet-50 and InceptionResNet
v-2. For these models, we obtain ImageNet pre-trained
weights from TensorFlow’s GitHub repository 1, and do
not perform any re-training or fine-tuning. The evaluations
are done on a subset of 5000 images from the ILSVRC
[50] validation set. The images are selected such that the
respective model achieves a top-1 accuracy of 100% on the
clean non-attacked images. Evaluating defense mechanisms
on already misclassified images is not meaningful, since
an attack on a misclassified image is considered successful
as per the definition. We also perform experiments on the
NIPS 2017 Competition on Adversarial Attacks and Defenses
DEV dataset [53]. The dataset is collected by Google Brain
organizers, and consists of 1000 images of size 299×299. An
ImageNet pre-trained Inception v-3 model achieves 95.9%

1https://github.com/tensorflow/models/tree/master/research/slim
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TABLE I: Performance comparison with state-of-the art defense mechanisms on 5000 images from ILSVRC validation set.
The images are selected such that the respective classifier achieves 100% accuracy. Our proposed defense consistently achieves
superior performance across three different models and various adversarial attacks.

Model Clean Images FGSM-2 FGSM-5 FGSM-10 I-FGSM DeepFool C&W MI-FGSM DI2FGSM MDI2FGSM
No Defense

Inception v-3 100 31.7 28.7 30.5 11.4 0.4 0.8 1.7 1.4 0.6
ResNet-50 100 12.2 7.0 6.1 3.4 1.0 0.1 0.4 0.3 0.2

Inception ResNet v-2 100 59.4 55.0 53.6 21.6 0.1 0.3 0.5 1.5 0.6
JPEG Compression (Das et al. [38])

Inception v-3 96.0 62.3 54.7 48.8 77.5 81.2 80.5 69.4 2.1 1.3
ResNet-50 92.8 57.6 49.0 42.9 74.8 77.3 81.3 70.8 0.7 0.4

Inception ResNet v-2 95.5 67.0 55.3 53.7 81.3 83.9 83.1 72.8 1.6 1.1
Random resizing + zero padding (Xie et al. [18])

Inception v-3 97.3 69.2 57.3 53.2 90.6 88.9 89.5 89.5 7.0 5.8
ResNet-50 92.5 66.8 55.7 48.8 88.2 90.9 87.5 88.0 6.6 4.2

Inception ResNet v-2 98.7 70.7 59.1 55.8 87.5 89.7 88.0 88.3 7.5 5.3
Quilting + Total Variance Minimization (Guo et al. [39])

Inception v-3 96.2 70.2 62.0 54.6 85.7 85.9 85.3 84.5 4.1 1.7
ResNet-50 93.1 69.7 61.0 53.3 85.4 85.0 84.6 83.8 3.6 1.1

Inception ResNet v-2 95.6 74.6 67.3 59.0 86.5 86.2 85.3 84.8 4.5 1.2
Pixel Deflection (Prakash et al. [26])

Inception v-3 91.9 71.1 66.7 58.9 90.9 88.1 90.4 90.1 57.6 21.9
ResNet-50 92.7 84.6 77.0 66.8 91.2 90.3 91.7 89.6 57.0 29.5

Inception ResNet v-2 92.1 78.2 75.7 71.6 91.3 88.9 89.7 89.8 57.9 24.6
Our work: Wavelet Denoising + Image Super Resolution

Inception v-3 97.0 94.2 87.9 79.7 96.2 96.1 96.0 95.9 67.9 31.7
ResNet-50 93.9 86.1 77.2 64.9 92.3 91.5 93.1 92.0 60.7 31.9

Inception ResNet v-2 98.2 95.3 87.4 82.3 95.8 96.0 95.6 95.0 69.8 35.6

top-1 accuracy on NIPS 2017 DEV images.

Attacks: We generate attacked images using different
techniques, including Fast Gradient Sign Method (FGSM)
[14], iterative FGSM (I-FGSM) [15], Momentum Iterative
FGSM (MI-FGSM) [33], DeepFool [34], Carlini and
Wagner [35], Diverse Input Iterative FGSM (DI2FGSM) and
Momentum Diverse Input Iterative FGSM (MDI2FGSM) [36].
We use publicly available implementations of these methods:
Cleverhans [54], Foolbox [55] and codes2 3 provided by
[33], [36]. For FGSM, we generate attacked images with
ε ∈ {2, 5, 10} and for iterative attacks, the maximum
perturbation size is restricted to 16. All the adversarial
images are generated for the undefended models, after which
various defense schemes are implemented in gray-box settings.

Defenses: We compare our proposed defense with a number
of recently introduced state-of-the-art image transformation
based defense schemes in the literature. These include JPEG
Compression [38], Random Resizing and Padding [18], Image
quilting + total variance minimization [39] and Pixel Deflec-
tion (PD) [26]. We use publicly available implementations 4 5

6 7 of these methods. All experiments are run on the same set
of images and against the same attacks for a fair comparison.

For our experiments, we explore two broad categories of
Single Image Super Resolution (SISR) techniques: i) Inter-
polation based methods and ii) Deep Learning (DL) based
methods. Interpolation based methods like Nearest Neighbor

2https://github.com/dongyp13/Non-Targeted-Adversarial-Attacks
3https://github.com/cihangxie/DI-2-FGSM
4https://github.com/poloclub/jpeg-defense
5https://github.com/cihangxie/NIPS2017_adv_challenge_defense
6https://github.com/facebookresearch/adversarial_image_defenses
7https://github.com/iamaaditya/pixel-deflection

(NN), Bi-Linear and Bi-cubic upsampling are computation-
ally efficient, but not quite robust against stronger attacks
(DI2FGSM and MDI2FGSM). Recently proposed DL based
methods have shown superior performance in terms of Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index
(SSIM), and the mean squared error (MSE). Here, we consider
three DL based SISR techniques, i) Super Resolution using
ResNet model (SR-ResNet) [56], ii) Enhanced Deep Residual
Network for SISR (EDSR) [47] and iii) Super Resolution
using Generative Adversarial Networks (SR-GAN) [56]. Our
experiments show that EDSR consistently performs better.
EDSR builds on a residual learning [3] scheme that specifically
focuses on high-frequency patterns in the images. Compared to
the original ResNet, EDSR demonstrates substantial improve-
ments by removing Batch Normalization layers (from each
residual block) and ReLU activation (outside residual blocks).

A. Manifold Assumption Validation

In this paper we propose that clean and adversarial examples
lie on different manifolds and super-resolving an image to a
higher dimensional space remaps the adversarial sample back
to the natural image manifold.

To validate this assumption, we fine-tune a pre-trained
Inception v-3 model on the ImageNet dataset as a binary
classifier using 10,000 pairs of clean and adversarial examples
(generated from all the aforementioned attack techniques). We
re-train the top-2 blocks while freezing the rest with a learning
rate reduced by a factor of 10. The global average pooling
layer of the model is followed by a batch normalization layer,
drop-out layer and two dense layers (1024 and 1 nodes, respec-
tively). Our model efficiently leverages the subtle difference
between clean images and their adversarial counterparts and
separates the two with a very high accuracy (99.6%). To
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further validate our assumption on super-resolution, we test
our defended images using this binary classifier. The classifier
labels around 91% of the super-resolved images as clean,
confirming that the vast majority of restored samples lie on
the natural image manifold.

In Figure. 1, we plot the features extracted from the last
layer of the binary classifier to visualize our manifold assump-
tion validation. We reduce the dimensionality of features to 3
for visualization (containing 90% of variance) using Principle
Component Analysis.

B. Results and Analysis

Table I shows the destruction rates of various defense mech-
anisms on 5000 ILSVRC validation set images. Destruction
rate is defined as the ratio of successfully defended images
[15]. A destruction rate of 100% implies that all images are
correctly classified after applying the defense mechanism. It
should be noted that we define destruction rates in terms of
top-1 classification accuracy, which makes defending against
attacks more challenging since we have to recover the ex-
act class label. ‘No Defense’ in Table I shows the model
performance on generated adversarial images. A lower value
under ‘No Defense’ is an indication of a strong attack. The
results show that iterative attacks are better at fooling the
model compared with the single-step attacks. The iterative
attacks, however, are not transferable and are easier to defend.
Similarly, targeted attacks are easier to defend compared with
their non-targeted counterparts, as they tend to over-fit the
attacked model [35]. Considering them as weak attacks, we
therefore only report the performance of our defense scheme
against more generic non-targeted attacks.

For the iterative attacks (C&W and DeepFool), both Ran-
dom Resizing + Padding and PD achieve similar perfor-
mance, successfully recovering about 90% of the images.
In comparison, our proposed super-resolution based defense
recovers about 96% of the images. For the single-step attack
categories, Random Resizing + Padding fails to defend. This
is also noted in [18]. To overcome this limitation, an ensemble
model with adversarial augmentation is used for defense.
Compared with the JPEG compression based defense [31],
our proposed method achieves a substantial performance gain
of 31.1% for FGSM (ε = 10). In the single-step attacks
category (e.g., FGSM-10), our defense model outperforms
Random Resizing + Padding and PD by a large margin of
26.7% and 21.0%, respectively. For the recently proposed
strong attack (MDI2FGSM), all defense techniques (JPEG
compression, Random Resizing + Padding, Quilting + TVM
and PD) largely fail, recovering only 1.3%, 5.8%, 1.7% and
21.9% of the images, respectively. In comparison, the proposed
image super-resolution based defense can successfully recover
31.3% of the images.

We show a further performance comparison of our proposed
defense with other methods on the NIPS-DEV dataset in Ta-
ble II. Here, we only report results on Inception v-3, following
the standard evaluation protocols as per the competition’s
guidelines [53]. Inception v-3 is a stronger classifier, and we
expect the results to generalize across other classifiers. Our

experimental results in Table II show the superior performance
of the proposed method.

C. Adversarial Training

Adversarial Training has been shown to enhance many re-
cently proposed defense methods [53] under white-box attack
settings. Taking insights from the effect of super-resolution
under gray-box settings, we introduce a robust adversarial
training paradigm that enhances the performance of traditional
adversarial training. For this, we jointly train our model on an
augmented dataset comprising of clean, attacked and super-
resolved images (for CIFAR-10 dataset) to improve the gen-
eralization of adversarial training. Our results in Table V in-
dicate that our adversarially trained model provides enhanced
robustness against white-box attacks. Below we describe our
experimental settings used for training and evaluation.

Experimental Settings: The adversarial samples used for
the training process are generated using Fast Gradient Sign
Method (FGSM) [14] by uniformly sampling ε from an
interval of [0.01, 0.05] for CIFAR-10 dataset. These attacked
images are then super-resolved to form the augmented dataset
for training. We evaluate the model’s robustness against single-
step as well as strong iterative attacks in white-box conditions.
The number of iterations for Iterative Fast Gradient Sign
Method (I-FGSM) [19], Momentum Iterative FGSM (MI-
FGSM) [33] and Projected Gradient Descent (PGD) [57] are
set to 10 with a step size of ε/10 for I-FGSM and MI-FGSM
and ε/4 for the PGD attack. The iteration steps for the Carlini
& Wagner (C&W) attack [35] are 1,000 with a learning rate of
0.01. We used a ResNet-110 model for training the CIFAR-10
dataset. Table VI gives the detailed architecture of the model
used.

D. Ablation Study

Super-resolution Methods: Image super resolution recov-
ers off-the-manifold adversarial images from a low-resolution
space and remaps them to the high-resolution space. This
should hold true for different super-resolution techniques in
the literature. In Table III, we evaluate the effectiveness
of three image super-resolution techniques- SR-ResNet, SR-
GAN [56] and EDSR [47]. Specifically, attacked images are
super-resolved to 2×, without using any wavelet denoising.
Experiments are performed on Inception v-3 classifier. The
results in Table III show a comparable performance across the
evaluated super-resolution methods. These results demonstrate
the effectiveness of super-resolution in recovering images.

Besides state-of-the-art image super-resolution methods, we
further consider documenting the results on enhancing image
resolution using interpolation-based techniques. For this, we
perform experiments by resizing the images with Nearest
Neighbor, Bi-linear and Bi-cubic interpolation techniques. In
Table IV, we report the results achieved by three different
strategies: upsample (by 2×), upsample + downsample and
downsample + upsample. The results show that, although the
performance of the simple interpolation based methods is
inferior to more sophisticated state-of-the-art super-resolution
techniques in Table III, the simple interpolation based image
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TABLE II: Top-1 accuracy comparison for different defense mechanisms on NIPS-DEV dataset on Inception v-3 model.

Attack No Defense Das et al. [38] Xie et al. [18] Guo et al. [39] Prakash et al. [26] Ours (SR) Ours (WD + SR)
Clean 95.9 89.7 92.0 88.8 86.5 90.4 90.9
FGSM-2 22.1 58.3 65.2 68.3 70.7 87.1 87.5
FGSM-5 20.0 50.2 52.7 58.0 62.9 79.6 79.9
FGSM-10 23.1 43.5 47.5 50.5 54.2 69.8 70.1
I-FGSM 10.1 75.8 85.3 80.9 86.2 89.7 90.1
DeepFool 1.0 77.0 84.7 80.1 84.2 90.2 90.4
C&W 0.3 76.3 84.8 80.3 84.9 90.5 90.7
MI-FGSM 1.4 72.4 83.6 78.2 84.0 89.4 89.8
DI2FGSM 1.7 2.0 5.1 3.1 54.6 48.9 63.8
MDI2FGSM 0.6 1.3 4.0 1.8 20.4 26.1 28.7

TABLE III: Performance comparison of various super-
resolution techniques in the literature. The up-scaling factor
S = 2. Top-1 accuracies are reported.

Attack No Defense SR-ResNet [56] SR-GAN [56] EDSR [47]
Clean 100.0 94.0 92.3 96.2
FGSM-2 31.7 89.5 85.7 92.6
FGSM-5 28.7 83.7 80.1 85.7
FGSM-10 30.5 69.9 69.0 73.3
I-FGSM 11.4 93.4 91.0 95.9
DeepFool 0.4 93.2 93.0 95.5
C&W 0.8 93.3 91.3 95.6
MI-FGSM 1.7 92.6 87.6 95.2
DI2FGSM 1.4 54.3 48.9 57.2
MDI2FGSM 0.6 24.9 23.0 27.1

TABLE IV: Performance of Nearest Neighbor, Bi-linear and
Bi-cubic image resizing techniques as a defense. Evaluation
is done on NIPS-DEV dataset using a pretrained Inception v-
3 model. US: Upsample; DS: Downsample. The US and DS
factor is 2.

Transform Nearest Neighbor Bi-linear Bi-cubic
US 3 - - 3 - - 3 - -
US → DS - 3 - - 3 - - 3 -
DS → US - - 3 - - 3 - - 3
Attack
Clean 94.9 93.5 84.1 94.3 91.1 86.2 93.9 89.1 86.0
FGSM-2 74.2 25.9 23.8 73.5 24.0 21.4 71.2 20.3 19.5
FGSM-5 61.0 18.6 18.1 60.5 18.1 17.0 54.8 18.7 18.0
FGSM-10 52.9 16.8 16.0 50.1 15.7 15.4 49.2 16.2 15.8
I-FGSM 86.4 45.9 43.0 83.4 41.9 40.6 82.1 37.5 35.6
DeepFool 87.3 43.0 41.2 80.6 40.7 39.7 80.1 34.5 30.1
C&W 82.5 44.4 41.2 80.1 41.9 37.6 79.3 39.6 36.0
MI-FGSM 81.4 41.0 38.0 80.0 42.9 40.3 80.7 41.2 39.8
DI2FGSM 36.0 5.8 3.9 34.8 6.1 4.9 31.2 7.8 5.6
MDI2FGSM 16.1 3.8 2.0 10.2 3.9 3.5 9.6 2.0 1.7

resizing is surprisingly effective and achieves some degree of
defense against adversarial attacks.

Effect of Wavelet Denoising: Our proposed defense first
deploys wavelet denoising, which aims to minimize the
effect of adversarial perturbations, followed by image super-
resolution to selectively introduce high-frequency components
into an image (as seen in Fig. 3) and recover off-the-manifold
attacked images. Here we investigate the individual impact of
these two modules towards defending adversarial attacks. We
perform extensive experiments on three classifiers: Inception
v-3, ResNet-50 and InceptionResNet v-2. Table VII shows the
top-1 accuracy of each of the models for different adversarial
attacks. The results show that, while wavelet denoising helps
suppress added adversarial noise, the major performance
boost is achieved with image super-resolution. The best

TABLE V: Comparison of our robust adversarial training method on
CIFAR-10 dataset against various white-box attacks (numbers show
robustness, higher is better). We report results without adversarial
training (baseline), with adversarial training (AdvTrain) and adver-
sarial training with training dataset augmented with super-resolved
images (Robust AdvTrain). Here ε is the perturbation size and c is
the initial constant for C&W attack.

Attacks Params. Baseline AdvTrain Robust AdvTrain

No Attack - 90.8 84.5 87.4

FGSM ε = 0.02 36.5 44.3 48.5
ε = 0.04 19.4 31.0 37.1

I-FGSM ε = 0.01 26.0 32.6 35.3
ε = 0.02 6.1 7.8 10.3

MI-FGSM ε = 0.01 26.8 34.9 37.7
ε = 0.02 7.4 9.3 12.5

C&W
c = 0.001 61.3 67.7 70.9
c = 0.01 35.2 40.9 45.5
c = 0.1 0.6 25.4 30.1

PGD ε = 0.01 23.4 24.3 29.6
ε = 0.02 6.0 7.8 10.2

ResNet-110

Conv(16, 3× 3) + BN
ReLU(2× 2)

[[ Conv(16∗k, 1× 1) + BN
Conv(16∗k, 3× 3) + BN
Conv(64∗k, 1× 1) + BN

]
×12

]
k∈{1, 2, 4}

GAP

FC(1024)

FC(10)

TABLE VI: The
convolutional neural
network architecture
used for adversarial
training where
the training set is
augmented with
adversarial and
super-resolved
images.

performance is achieved when wavelet denoising is followed
by super-resolution. These empirical evaluations demonstrate
that image super-resolution with wavelet denoising is a robust
model-agnostic defense technique for both iterative and
non-iterative attacks.

Hyper-parameters Selection: Unlike many existing defense
schemes, which require computationally expensive model
re-training and parameter optimization [18]–[20], [27], our
proposed defense is training-free and does not require tuning
a large set of hyper-parameters. Our proposed defense has
two hyper-parameters: the scale of super-resolution (S) and
the coefficient of BayesShrink (σρ). We perform a linear
search over the scaling factor S for one single-step (FGSM-2)
and one iterative (C&W) attack on 500 images, randomly
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TABLE VII: Individual contributions of Wavelet Denoising (WD) and Super Resolution (SR) towards the proposed defense
scheme across three different classifiers. Parameters: σp = 0.04 and S = 2. The proposed defense scheme works well across
a range of classifiers.

Inception v-3 model ResNet-50 model Inception ResNet v-2 model
Attack No Defense WD SR WD+SR No Defense WD SR WD+SR No Defense WD SR WD+SR
Clean 100 94.0 96.2 97.0 100 92.7 93.2 93.9 100 94.0 97.2 98.2
FGSM-2 31.7 57.3 92.6 94.2 12.2 41.4 85.4 86.1 59.4 70.5 91.8 95.3
FGSM-5 28.7 36.4 85.7 87.9 7.0 12.7 74.0 77.2 55.0 57.5 85.7 87.4
FGSM-10 30.5 32.7 73.3 79.7 6.1 8.6 60.5 64.9 53.6 55.4 79.4 82.3
I-FGSM 11.4 76.4 95.9 96.2 3.4 71.2 91.0 92.3 21.6 82.6 94.3 95.8
DeepFool 0.4 74.9 95.5 96.1 1.0 71.8 89.3 91.5 0.1 79.1 95.4 96.0
C&W 0.8 76.3 95.6 96.0 0.1 79.0 92.0 93.1 0.3 81.0 94.0 95.6
MI-FGSM 1.7 77.0 95.2 95.9 0.4 71.2 89.6 92.0 0.5 80.6 93.0 95.0
DI2FGSM 1.4 18.3 57.2 67.9 0.3 17.9 49.8 60.7 1.5 11.9 57.6 69.8
MDI2FGSM 0.6 5.8 27.1 31.7 0.2 9.4 22.4 31.9 0.6 6.9 29.4 35.6

TABLE VIII: Cross-Model Transferability Test: PGD adversaries
are first generated with ε = 8/255, using the source network,
followed by our image restoration scheme and then evaluated on
target model. Note that the cross-model success rate of our defense
is higher under black-box settings. Numbers show robustness, higher
the better.

Source
Target ResNet 50 Inception v-3 DenseNet 121

ResNet 50 - 84.7 78.0
Inception v-3 78.0 - 75.8
DenseNet 121 72.8 83.1 -

selected from the ILSVRC validation set. These experiments
are performed on Inception v-3 model. Table IX shows
the classifier performance across different super-resolution
scaling factors. We select S = 2, since it clearly shows
significantly superior performance. Higher values of S
introduce significant high frequency components in the
image, which degrade the performance. For σρ, we follow
[26] and choose σρ ∈ {0.03, 0.04, 0.05} as σρ = 0.04.

Cross-Model Transferability Test: We further evaluate
the black-box settings which can be adapted closest to
our approach as follows: firstly, we generate adversarial
examples using a source model, secondly, we apply our
image restoration techniques comprising of wavelet denoising
and image super resolution and finally, we test the images on
a target model. The results in Table VIII show the robustness
of our method under these black-box settings. We note a
higher cross-model success rate for our defense under the
above-mentioned settings.

TABLE IX: Selection of super-resolution scaling factor. S = 2 is
selected due to its superior performance.

Attack No Defense S = 2 S = 3 S = 4
Clean 100 97.2 79.0 59.2
FGSM 31.7 92.9 76.2 58.8
C&W 0.3 95.8 77.7 58.9

CAMs Visualization: Class Activation Maps (CAMs) [58] are

weakly supervised localization techniques, which are helpful
in interpreting the predictions of the CNN model by providing
a visualization of discriminative regions in an image. CAMs
are generated by replacing the last fully connected layer by a
global average pooling (GAP) layer. A class weighted average
of the outputs of the GAP results in a heat map which can
localize the discriminative regions in the image responsible for
the predicted class labels. Fig. 8 and 9 show the CAMs for
the top-1 prediction of Inception v-3 model for clean, attacked
and recovered image samples. It can be observed that mapping
an adversarial image to higher resolution destroys most of the
noisy patterns, recovering CAMs similar to the clean images.
Row 5 (Fig. 8 and 9) show the added perturbations to the
clean image sample. Super-resolving an image selectively adds
high-frequency components that eventually help in recovering
model attention towards discriminative regions corresponding
to the correct class labels (see Row 6, Fig. 8 and 9).

Qualitative Analysis of SR: In Fig. 5 we show two clean
image samples where super-resolving the image to a higher
dimension alters the classifier’s predictions. In one case, super
resolution causes the image to be misclassified. However, in
the other, it recovers the actual class of the image which
was otherwise incorrectly classified by a deep learning model.
These cases predominantly arise in situations where the net-
work’s confidence for a single class is low, i.e. top-two
predictions are roughly equal (see Fig. 5).

In Fig. 6 we show the effect of individual components of
the defense mechanism on a sample adversarial image. In an
adversarial setting the perturbed images are generated with
the objective of changing the model’s prediction for an input
without significantly changing the image (i.e., within a small
bound ε). This means that the generated noise is not sampled
from a predefined noise model, but is instead dependent on the
loss surface and the input sample. Since SR models like EDSR
may not deal with the noise, we first employ a denoiser in our
proposed pipeline. As shown in Fig. 6, the denoised inputs to
the SR network perform reasonably well.

E. Identifying Obfuscated Gradients

Recently, Athalye et al. [59] were successful in breaking
several defense mechanisms in the white-box settings by
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Image Sample Super-resolved

Image

Super-resolved

Image
Image Sample

Fig. 5: Effect of Image Super Resolution on clean image samples
from the NIPS 2017 Dev Dataset. Predictions are made using a pre-
trained Inception v-3 model. Green color refers to the correct class,
while red and blue indicate incorrect classes. It can be seen that
super resolving an image to a higher dimension at some instances
depreciate the model’s classification prediction (top), but can also
recover the correct class for an otherwise misclassified clean image
sample (bottom).

Adversarial Image Super-Resolved Image

Denoised Image Super-Resolved Image

Fig. 6: Qualitative effect of Image Super Resolution on adversarial
image sample and its denoised counter-part.

identifying that they exhibit a false sense of security. They
call this phenomenon gradient masking. Below, we discuss
how our defense mechanism does not cause gradient masking
on the basis of characteristics defined in [59], [60].

Iterative attacks perform better than one-step attacks:
Our evaluations in Table I indicate that stronger iterative at-
tacks (e.g. I-FGSM, MI-FGSM) are more successful at attack-
ing the undefended models than single-step attacks (FGSM in
our case).

Robustness against gray-box settings is higher than
white-box settings: In white-box settings, the adversary has
complete knowledge of the model, so attacks should be more
successful. In other words, if a defense does not suffer from
obfuscated gradients, the robustness of the model against
white-box settings should be inferior to that in the gray-box
settings. In Table X, we show that the robustness under white-
box settings is lower than the robustness for gray-box settings.
This validates that the proposed defense follows the desired
trend and does not obfuscate gradients.

TABLE X: Performance of the proposed defense for NIPS 2017
Dev dataset when exposed to white-box settings (in this case the
adversary has complete knowledge of the denoising process and
super-resolution model). Here ε is the perturbation size.

Attacks Params. White-box Gray-box

No Attack - 90.9 90.9

FGSM
ε = 2/255 60.7 87.5
ε = 5/255 49.5 79.9
ε = 10/255 36.0 70.1

I-FGSM ε = 16/255 30.7 90.1

MI-FGSM ε = 16/255 30.6 89.8
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Fig. 7: Performance
of our defense model
on adversarial images
(NIPS 2017 dataset)
generated using BPDA
and EOT introduced by
Athalye et al. [61]. For
an undefended model,
the attack has a success
rate of 100%.

Since our defense scheme is based on a combina-
tion of transformations, wavelet-denoising and image super-
resolution, we implement Backward Pass Differentiable Ap-
proximation (BPDA) to bypass the non-differentiable com-
ponent of our defense. We also evaluate the robustness of
our method against Expectation Over Transformation (EOT)
[59] attack. However, the attack methods fail to substantially
break our defense, as shown in Fig. 7. With EOT [59], the
accuracy drops by a mere 8.9% for a strong attack (PGD)
with a perturbation of ε = 8/255.

V. CONCLUSION

Adversarial perturbations can seriously compromise the
security of deep learning based models. This can have wide
repercussions since the recent success of deep learning has led
to these models being deployed in a broad range of important
applications, from health-care to surveillance. Thus, designing
robust defense mechanisms that can counter adversarial attacks
without degrading performance on unperturbed images is
an absolute requisite. In this paper, we presented an image
restoration scheme based on super-resolution, that maps off-
the-manifold adversarial samples back to the natural image
manifold. We showed that the primary reason that super-
resolution networks can negate the effect of adversarial noise
is due to their addition of high-frequency information into the
input image. Our proposed defense pipeline is agnostic to the
underlying model and attack type, does not require any learn-
ing and operates equally well for black and white-box attacks.
We demonstrated the effectiveness of the proposed defense
approach compared to state-of-the-art defense schemes, where
it outperformed competing models by a considerable margin.
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CAM- Clean ImageImage Sample CAM- Adversarial CAM- Recovered 𝑥𝑐 − 𝑥𝑎𝑑𝑣 𝑥𝑐 − 𝑥𝑡 Fig. 8: Visualization
of Defense against
Single-Step Attack
(FGSM). First column
shows three clean
images. Subsequent
three columns show
the class activation
maps for clean,
FGSM (ε = 10)
attacked and recovered
images. Second
last column shows
the perturbations
(magnified 10x)
added to the clean
image by FGSM
and the last column
shows the difference
between clean image
and defended image
(magnified 10x)

CAM- Clean ImageImage Sample CAM- Adversarial CAM- Recovered 𝑥𝑐 − 𝑥𝑎𝑑𝑣 𝑥𝑐 − 𝑥𝑡 Fig. 9: Visualization
of Defense against
Iterative Attack
(CW). First column
shows three clean
images. Subsequent
three columns show
the class activation
maps for clean,
CW (`2 norm)
attacked and recovered
images. Second
last column shows
the perturbations
(magnified 40x) added
to the clean image
by CW and the last
column shows the
difference between
clean image and
defended image
(magnified 10x)
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