
Synthesizing the Unseen for Zero-shot Object
Detection

Nasir Hayat1, Munawar Hayat1,2, Shafin Rahman3, Salman Khan1,2

Syed Waqas Zamir1, and Fahad Shahbaz Khan1,2

1 Inception Institute of Artificial Intelligence, UAE
2 MBZ University of AI, UAE 3 North South University, Bangladesh

nh2218@nyu.edu,{munawar.hayat, salman.khan, fahad.khan}@mbzuai.ac.ae

Abstract. The existing zero-shot detection approaches project visual
features to the semantic domain for seen objects, hoping to map un-
seen objects to their corresponding semantics during inference. However,
since the unseen objects are never visualized during training, the de-
tection model is skewed towards seen content, thereby labeling unseen
as background or a seen class. In this work, we propose to synthesize
visual features for unseen classes, so that the model learns both seen
and unseen objects in the visual domain. Consequently, the major chal-
lenge becomes, how to accurately synthesize unseen objects merely us-
ing their class semantics? Towards this ambitious goal, we propose a
novel generative model that uses class-semantics to not only generate
the features but also to discriminatively separate them. Further, using
a unified model, we ensure the synthesized features have high diversity
that represents the intra-class differences and variable localization pre-
cision in the detected bounding boxes. We test our approach on three
object detection benchmarks, PASCAL VOC, MSCOCO, and ILSVRC
detection, under both conventional and generalized settings, showing im-
pressive gains over the state-of-the-art methods. Our codes are available
at https://github.com/nasir6/zero_shot_detection

Keywords: Zero-shot object detection, generative adversarial learning,
visual-semantic relationships.

1 Introduction

Object detection is a challenging problem that seeks to simultaneously localize
and classify object instances in an image [1]. Traditional object detection meth-
ods work in a supervised setting where a large amount of annotated data is used
to train models. Annotating object bounding boxes for training such models is
a labor-intensive and expensive process. Further, for many rare occurring ob-
jects, we might not have any training examples. Humans, on the other hand,
can easily identify unseen objects solely based upon the objects’ attributes or
their natural language description. Zero Shot Detection (ZSD) is a recently in-
troduced paradigm which enables simultaneous localization and classification of
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previously unseen objects. It is arguably the most extreme case of learning with
minimal supervision [2,3].

ZSD is commonly accomplished by learning to project visual representations
of different objects to a pre-defined semantic embedding space, and then per-
forming nearest neighbor search in the semantic space at inference [2,3,4,5].
Since the unseen examples are never visualized during training, the model gets
significantly biased towards the seen objects [6,7], leading to problems such as
confusion with background and mode collapse resulting in high scores for only
some unseen classes. In this work, we are motivated by the idea that if an ob-
ject detector can visualize the unseen data distribution, the above-mentioned
problems can be alleviated. To this end, we propose a conditional feature gen-
eration module to synthesize visual features for unseen objects, that are in turn
used to directly adapt the classifier head of Faster-RCNN [1]. While such feature
synthesis approaches have been previously explored in the context of zero-shot
classification, they cannot be directly applied to ZSD due to the unique chal-
lenges in detection setting such as localizing multiple objects per image and
modeling diverse backgrounds.

The core of our approach is a novel feature synthesis module, guided by
semantic space representations, which is capable of generating diverse and dis-
criminative visual features for unseen classes. We generate exemplars in the
feature space and use them to modify the projection vectors corresponding to
unseen classes in the Faster-RCNN classification head. The major contributions
of the paper are: (i) it proposes a novel approach to visual feature synthesis con-
ditioned upon class-semantics and regularized to enhance feature diversity, (ii)
feature generation process is jointly driven by classification loss in the semantic
space for both seen and unseen classes, to ensure that generated features are dis-
criminant and compatible with the object-classifier, (iii) extensive experiments
on Pascal VOC, MSCOCO and ILSVRC detection datasets to demonstrate the
effectiveness of the proposed method. For instance, we achieve a relative mAP
gain of 53% on MS-COCO dataset over existing state-of-the-art on ZSD task.
Our approach is also demonstrated to work favorably well for Generalized ZSD
(GZSD) task that aims to detect both seen and unseen objects.

2 Related Work

Zero-shot Recognition: The goal of Zero shot learning (ZSL) is to classify
images of unseen classes given their textual semantics in the form of wordvecs
[8], text-descriptions [9,5] or human annotated attributes [10]. This is commonly
done by learning a joint embedding space where semantics and visual features
can interact. The embeddings can be learnt to project from visual-to-semantic
[11], or semantic-to-visual space [8]. Some methods also project both visual and
semantic features into a common space [12]. The existing methods which learn
a projection or embedding space have multiple inherent limitations such as the
hubness problem [13] caused by shrinked low dimensional semantic space with
limited or no diversity to encompass variations in the visual image space. These
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methods are therefore prone to mis-classify unseen samples into seen due to non-
existence of training samples for the unseen. Recently, generative approaches
deploying variational auto-encoders (VAEs) or generative adverserial networks
(GANs) have shown promises for ZSL [14,15,16,17]. These approaches model the
underlying data distribution of visual feature space by training a generator and
a discriminator network that compete in a minimax game, thereby synthesizing
features for unseen classes conditioned on their semantic representations.
Zero-shot Detection: The existing literature on zero shot learning is domi-
nated by zero shot classification (ZSC). Zero Shot Detection (ZSD), first intro-
duced in [2,3], is significantly more challenging compared with ZSC, since it aims
to simultaneously localize and classify an unseen object. [2] maps visual features
to a semantic space and enforces max-margin constraints along-with meta-class
clustering to enhance inter-class discrimination. The authors in [3] incorporate
an improved semantic mapping for the background in an iterative manner by
first projecting the seen class visual features to their corresponding semantics
and then the background bounding boxes to a set of diverse unseen semantic
vectors. [4] learns an embedding space as a convex combination of training class
wordvecs. [5] uses a Recurrent Neural Network to model natural language de-
scription of objects in the image.

Unlike ZSC, synthetic feature generation for unseen classes is less investi-
gated for ZSD and only [18] augments features. Ours is a novel feature synthesis
approach that has the following major differences from [18] (i) For feature gener-
ation, we only train a single GAN model, in comparison to [18] which trains three
isolated models. Our unified GAN model is capable of generating diverse and
distinct features for unseen classes. (ii) We propose to incorporate a semantics
guided loss function, which improves feature generation capability of the gen-
erator module for unseen categories. (iii) To enhance diversification amongst
the generated features, we incorporate a mode seeking regularization term. We
further compare our method directly with [18] and show that it outperforms [18]
by a significant margin, while using a single unified generation module.

3 Method

Motivation: Most of the existing approaches for ZSD address this problem in
the semantic embedding space. This means that the visual features are mapped
to semantic domain where unseen semantics are related with potential unseen
object features to predict decision scores. We identify three problems with this
line of investigation. (i) Unseen background confusion: Due to the low objectness
scores for unseen objects, they frequently get confused as background during in-
ference. To counter this, [3,19] use external data in the form of object annotations
or vocabulary that are neither seen nor unseen. (ii) Biasness problem: Since, un-
seen objects are never experienced during training, the model becomes heavily
biased towards seen classes. For this, approaches usually design specialized loss
functions to regularize learning [19,2]. (iii) Hubness problem: Only a few unseen
classes get the highest scores in most cases. Addressing the problem in semantic
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space intensifies the hubness issue [20]. Very recently, GTNet [18] attempted to
address these issues in the visual domain instead of the semantic space. Similar
to [15], they generate synthesized features to train unseen classes in a supervised
manner. We identify two important drawbacks in this approach. (i) They train
multiple GAN models to incorporate variance due to intra-class differences and
varying overlaps with ground-truth (IoU). These generative models are trained
in a sequential manner, without an end-to-end learning mechanism, making it
difficult to fix errors in early stages. (ii) In addition to synthesized unseen ob-
ject features, they need to generate synthesized background features. As the
background semantic is not easy to define, synthesized background features be-
come too noisy than that of object features, thereby significantly hindering the
learning process. In this paper, we attempt to solve this problem by training
one unified GAN model to generate synthesized unseen object features that can
be used to train with real background features without the help of synthesized
background features. Further, without requiring multiple sequential generative
models to inject feature diversity [18], we propose a simple regularization term
to promote diversity in the synthesized features.

3.1 Overview

Problem Formulation: Consider the train set X s contains image of seen ob-
jects and the test set X u contains images of seen+unseen objects. Each image can
have multiple objects. Let’s denote Ys = {1, · · ·S} and Yu = {S+1, · · ·S+U} re-
spectively as the label sets for seen and unseen classes. Note that S and U denote
total number of seen and unseen classes respectively, and YS ∩Yu = ∅. At train-
ing, we are given annotations in terms of class labels y ∈ Ys and bounding-box
coordinates b ∈ R4 for all seen objects in X s. We are also given semantic embed-
dings Ws ∈ Rd×S and Wu ∈ Rd×U for seen and unseen classes respectively (e.g.,
Glove [21] and fastText [22]). At inference, we are required to correctly predict
the class-labels and bounding-box coordinates for the objects in images of X u.
For ZSD settings, only unseen predictions are required, while for generalized
ZSD, both seen and unseen predictions must be made.

We outline different steps used for our generative ZSD pipeline in Alg. 1
and Fig. 1 illustrates our method. The proposed ZSD framework is designed to
work with any two-stage object detector. For this paper, we implement Faster-
RCNN model with ResNet-101 backbone. We first train the Faster-RCNN model
φfaster-rcnn on the training images X s comprising of only seen objects and their
corresponding ground-truth annotations. Given an input image x ∈ X s, it is
first represented in terms of activations of a pre-trained ResNet-101. Note that
the backbone ResNet-101 was trained on ImageNet data by excluding images
belonging to the overlapping unseen classes of the evaluated ZSD datasets. The
extracted features are feed-forwarded to the region proposal network (RPN) of
Faster-RCNN, which generates a set of candidate object bounding box proposals
at different sizes and aspect ratios. These feature maps and the proposals are
then mapped through an RoI pooling layer, to achieve a fixed-size representation
for each proposal. Let’s denote the feature maps corresponding to K bounding
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Algorithm 1 The proposed feature synthesis base ZSD method

Input: X s,Xu, y ∈ Ys, b,Ws,Wu

1: φfaster-rcnn ← Train Faster-RCNN using seen data X s and annotations
2: Fs,Ys ← Extract features for b-boxes of X s using RPN of φfaster-rcnn

3: φWs-cls ← Train φWs-cls using Fs,Ys

4: φWu-cls ← Define φWu-cls using φWs-cls by replacing Ws with Wu

5: G← Train GAN by optimizing loss in Eq. 1
6: F̃u,Yu ← Syntesize features for unseen classes using G and Wu

7: φ′cls ← Train φcls using F̃u,Yu

8: φfaster-rcnn← Update φfaster-rcnn with φ′cls
9: Evaluate φfaster-rcnn on Xu

Output: Class labels and bbox-coordinates for Xu

box proposals of an image with fi ∈ R1024, i = 1, · · ·K. The features fi are
then passed through two modules: bounding-box-regressor, and object-classifier.
Once φfaster-rcnn is trained on the seen data X s, we use it to extract features
for seen object anchor boxes. All candidate proposals with an intersection-over-
union (IoU) ≥ 0.7 are considered as foreground, whereas the ones with IoU
≤ 0.3 are considered backgrounds. For Ntr training images in X s, we therefore
get bounding-box features Fs ∈ R1024×K.Ntr and their class-labels Ys ∈ RK.Ntr .
Next, we learn a unified generative model to learn the relationship between visual
and semantic domains.

3.2 Unified Generative Model

Given object features Fs, their class-labels Ys, and semantic vectors Ws for seen
training data X s, our goal is to learn a conditional generator G : W ×Z 7→F ,
which takes a class embedding w ∈ W and a random noise vector z ∼ N (0,1) ∈
Rd sampled from a Gaussian distribution and outputs the features f̃ ∈ F . The
generator G learns the underlying distribution of the visual features Fs and their
relationship with the semantics Ws. Once trained, the generator G is used to
generate unseen class visual features. Specifically, our feature generation module
optimizes the the following objective function,

min
G

max
D

α1LWGAN + α2LCs
+ α3LCu

+ α4Ldiv, (1)

where LWGAN minimizes the Wasserstein distance, conditioned upon class seman-
tics, LCs ensures the seen class features generated by G are suitable and aligned
with a pre-trained classifier φcls, and LCu ensures the synthesized features for
unseen classes are aligned with their semantic representations Wu. α1, α2, α3, α4

are the weighting hyper-parameters optimized on a held-out validation set. The
proposed approach is able to generate sufficiently discriminative visual features
to train the softmax classifier. Each term in Eq. 1 is discussed next.
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Fig. 1. Overview of proposed generative ZSD approach.

3.3 Conditional Wasserstein GAN

We build upon improved WGAN [23] and extend it to conditional WGAN (cW-
GAN), by integrating the class embedding vectors. The loss LWGAN is given by,

LWGAN = E[D(f , y)]− E[D(f̃ , y)] + λE[(||∇f̂D(f̂ , y)||2 − 1)2], (2)

where f are the real visual features, f̃ = G(w, z) denotes the synthesized visual

features conditioned upon class semantic vector w ∈ Ws, f̂ = αf + (1 − α)f̃ ,
α ∼ N (0, 1) and λ is the penalty coefficient. The first two terms provide an ap-
proximation of the Wasserstein distance, while the third term enforces gradients
to a unit norm along the line connecting pairs of real and generated features.

3.4 Semantically Guided Feature Generation

Our end goal is to augment visual features using the proposed generative mod-
ule such that they enhance discrimination capabilities of the classifier φcls. In
order to encourage the synthesized features f̃ = G(w, z) to be meaningful and
discriminative, we optimize the logliklihood of predictions for synthesized seen-
class features,

LCs
= −E[log p(y|G(w, z);φcls)], s.t.,w ∈Ws, (3)

where, y ∈ Ys denotes the ground-truth seen class labels, and p(y|G) is the class
prediction probability computed by the linear softmax classifier φcls. Note that
φcls was originally trained on the seen data X s and is kept frozen for the purpose
of computing LCs

. While the conditional Wasserstein GAN captures underlying
data distribution of visual features, the LCs

term enforces additional constraint
and acts as a regularizer to enforce the generated features to be discriminative.

The LCs term in Eq. 3 can act as a regularizer for seen classes only. This is
because LCs

employs pre-trained φcls which was learnt for seen data. In order to
enhance the generalization capability of our generator G towards unseen classes,
we propose to incorporate another loss term LCu

. For this purpose, we redefine
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the classifier head in terms of class semantics, as φWs-cls : f −→ fc −→ Ws −→
softmax −→ ypr, where f ∈ R1024 are the input features, fc is the learnable
fully-connected layer with weight matrix Wfc ∈ R1024×d and bias bfc ∈ Rd,
Ws ∈ Rd×S are the fixed non-trainable seen class semantics. The outputs of fc
layer are matrix multiplied with Ws followed by softmax operation to compute
class predictions ypr. The classifier φWs-cls is trained on the features Fs and
ground-truth labels Ys of seen class bounding boxes. We can then easily define
an unseen classifier φWu-cls by replacing the semantics matrix Ws in φWs-cls with
Wu. The semantics guided regularizer loss term LCu for synthesized unseen
samples is then given by,

LCu
= −E[log p(y|G(w, z);φWu-cls)], s.t.,w ∈Wu. (4)

The LCu term therefore incorporates the unseen class-semantics information
into feature synthesis, by ensuring that unseen features, after being projected
onto fc layer are aligned with their respective semantics vectors.

3.5 Enhancing Synthesis Diversity

Variations in synthesized features are important for learning a robust classifier.
Our cWGAN based approach maps a single class semantic vector to multiple
visual features. We observed that the conditional generation approach can suffer
from mode collapse [24] and generate similar output features conditioned upon
prior semantics only, where the noise vectors (responsible for variations in the
generated features) get ignored. In order to enhance the diversity of synthesized
features, we adapt the mode seeking regularization which maximizes the distance
between generations with respect to their corresponding input noise vectors [25].
For this purpose, we define the diversity regularization loss Ldiv as,

Ldiv = E[||G(w, z1)−G(w, z2)||1/||z1 − z2||1]. (5)

Ldiv encourages the G to diversify the synthesized feature space and enhance
chances of generating features from minor modes.

3.6 Unseen Synthesis and Detection

Optimizing the loss defined in Eq. 1 results in conditional visual feature gener-
ator G. We can synthesize an arbitrarily large number of features f̃u = G(z,w)
for each unseen class by using its corresponding class semantics vector w ∈Wu

and a random noise vector z ∼ N (0,1). Repeating the process for all unseen
classes, we get synthesized features F̃u and their corresponding class-labels Yu,
which can then be used to update softmax classifier φcls of φfaster-rcnn for un-
seen classes. At inference, a simple forward pass through φfaster-rcnn predicts
both class-wise confidence scores and offsets for the bounding-box coordinates.
We consider a fixed number of proposals from the RPN (100 in our case) and
apply non-maximal suppression (NMS) with a threshold of 0.5 to obtain final
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detections. The classification confidence for the proposals are directly given by
φcls, whereas the bounding-box offset coordinates of an unseen class are esti-
mated by the predictions for the seen class with maximum classification response.
We observe that this is a reasonable assumption since visual features for the un-
seen class and its associated confusing seen class are similar. For the case of
Generalized zero-shot-detection (GZSD), we simply consider all detections from
seen and unseen objects together, whereas for ZSD, detections corresponding to
seen objects are only considered.

4 Results

Datasets: We extensively evaluate our proposed ZSD method on three popular
object detection datasets: MSCOCO 2014 [26], ILSVRC Detection 2017 [27] and
PASCAL VOC 2007/2012 [28]. For MSCOCO, we use 65/15 seen/unseen split
proposed in [19]. As argued in [19], this split exhibits rarity and diverseness
of the unseen classes in comparison to another 48/17 split proposed in [3]. We
use 62,300 images for training set and 10,098 images from the validation set
for testing ZSD and GZSD. For ILSVRC Detection 2017, we follow the 177/23
seen/unseen split proposed in [2] that provides 315,731 training images and
19,008 images for testing. For PASCAL VOC 2007/2012, we follow the 16/4
seen/unseen split proposed in [4] that uses a total of 5,981 images from the train
set of 2007 and 2012 and 1,402 images for testing from val+test set of PASCAL
VOC 2007. To test the seen detection results, it uses 4,836 images from the
test+val set of 2007. For all these datasets, the testing set for ZSD contains at
least one unseen object per image.
Implementation details: We rescale each image to have the smaller side of
600, 800 and 600 pixels respectively for PASCAL VOC, MSCOCO and ILSVRC
Detection datasets. For training our generative module, we consider different an-
chor bounding boxes with an IoU ≥ 0.7 as foregrounds, whereas IoU ≤ 0.3 boxes
are considered as background. We ignore other bounding-boxes with an IoU be-
tween 0.3 and 0.7, since a more accurate bounding box helps GAN in learning
discriminative features. We first train our Faster-RCNN model on seen data for
12 epochs using standard procedure as in [29]. Our category classifier φcls, and
bounding-box regressor φreg both have a single fully-connected layer. The trained
model is then used to extract visual features corresponding to bounding-boxes
of ground-truth seen objects. We then train our generative model to learn the
underlying data distribution of the extracted seen visual features.

The generator G and discriminator D of our GAN model are simple single-
layered neural networks with 4096 hidden units. Through out our experiments,
the loss re-weighting hyper-parameters in Eq. 1 are set as, α1 = 1.0, α2 =
0.1, α3 = 0.1, α4 = 1.0, using a small held-out validation set. The noise vector
z has the same dimensions as the class-semantics vector w ∈ Rd and is drawn
from a unit Gaussian distribution with zero mean. We use λ = 10 as in [23].
For training of our cWGAN model, we use Adam optimizer with learning rate
10−4, β1 = 0.5, β2 = 0.999. The loss term LCu is included after first 5 epochs,
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when the generator G has started to synthesize meaningful features. Once the
generative module is trained, we synthesize 300 features for each unseen class,
conditioned upon their class-semantics, and use them to train φcls for 30 epochs
using Adam optimizer. To encode class-labels, unless mentioned otherwise, we
use the FastText [30] embedding vectors learnt on large corpus of non-annotated
text. The implementation of the proposed method in Pytorch is available at
https://github.com/nasir6/zero_shot_detection

Evaluation metrics: Following previous works [19,3], we report recall@100
(RE) and mean average precision (mAP) with IoU=0.5. We also report per-
class average prevision (AP) to study category-wise performance. For GZSD, we
report Harmonic Mean (HM) of performances for seen and unseen classes.

4.1 Comparisons with the State-of-the-Art

Comparison methods: We compare our method against a number of recently
proposed state-of-the-art ZSD and GZSD methods. These include: (a) SB, LAB
[3], which is a background-aware approach that considers external annotations
from object instances belonging to neither seen or unseen. This extra information
helps SB, LAB [3] to address the confusion between unseen and background. (b)
DSES [3] is a version of above approach that does not use background-aware
representations but employs external data sources for background. (c) HRE
[4]: A YOLO based end-to-end ZSD approach based on the convex combination
of region embeddings. (d) SAN [2]: A Faster-RCNN based ZSD approach that
takes advantage of super-class information and a max-margin loss to understand
unseen objects better. (e) PL-48, PL-65 [19]: A RetinaNet based ZSD approach
that uses polarity loss for better alignment of visual features and semantics. (f)
ZSDTD [5]: This approach uses textual description instead of a single-word
class-label to define semantic representation. The additional textual description
enriches the semantic space and helps to better relate semantics with the vi-
sual features. (g) GTNet [18]: uses multiple GAN models alongwith textual
descriptions similar to [5], to generate unseen features to train a Faster-RCNN
based ZSD model in a supervised manner. (h) Baseline: The baseline method
trains a standard Faster-RCNN model for seen data X s. To extend it to unseen
classes for ZSD, it first gets seen predictions ps, and then project them onto
class semantics to get unseen predictions pu = WuWT

s ps as in [19]. (i) Ours:
This is our proposed ZSD approach.

MSCOCO results: Our results and comparisons with different state-of-the-art
methods for ZSD and GZSD on MSCOCO dataset are presented in Table 1.
(a) ZSD results: The results demonstrate that our proposed method achieves a
significant gain on both metrics (mAP and RE) over the existing methods on
ZSD setting. The gain is specifically pronounced for the mAP metric, which is
more challenging and meaningful to evaluate object detection algorithms. This
is because mAP penalizes false positives while the RE measure does not im-
pose any penalty on such errors. Despite the challenging nature of mAP metric,

https://github.com/nasir6/zero_shot_detection
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Table 1. ZSD and GZSD performance of different methods on MSCOCO in terms
of mAP and recall (RE). Note that our proposed feature synthesis based approach
achieves a significant gain over the existing state-of-the-art. For the mAP metric, com-
pared with the second best method PL-65 [19], our method shows a relative gain of
53% on ZSD and 38% on harmonic mean of seen and unseen for GZSD.

Seen/Unseen GZSD
Metric Method

split
ZSD

seen unseen HM

mAP

SB [3] 48/17 0.70 - - -
DSES [3] 48/17 0.54 - - -

PL-48 [19] 48/17 10.01 35.92 4.12 7.39
PL-65 [19] 65/15 12.40 34.07 12.40 18.18
Baseline 65/15 8.80 36.60 8.80 14.19

Ours 65/15 19.0 36.90 19.0 25.08

RE

SB [3] 48/17 24.39 - - -
DSES [3] 48/17 27.19 15.02 15.32 15.17

PL-48 [19] 48/17 43.56 38.24 26.32 31.18
PL-65 [19] 65/15 37.72 36.38 37.16 36.76
Baseline 65/15 44.40 56.40 44.40 49.69

Ours 65/15 54.0 57.70 53.90 55.74

Table 2. Class-wise AP comparison of different methods on unseen classes of MSCOCO
for ZSD. The proposed method shows significant gains for a number of individual
classes. Compared with the second best method PL [19], our method shows an absolute
mAP gain of 6.6%.
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PL-Base [19] 8.48 4.0 28.7 .29 18.0 0.0 13.1 11.3 24.3 13.8 9.6 2.0 1.1 .24 .73 0.0
PL [19] 12.40 20.0 48.2 .63 28.3 13.8 12.4 21.8 15.1 8.9 8.5 .87 5.7 .04 1.7 .03

Ours-Baseline 8.80 1.9 31.8 0.0 59.3 3.8 0.6 0.1 19.6 10.7 2.8 0.0 0.8 0.0 0.0 0.0

Ours 19.0 10.1 48.7 1.2 64.0 64.1 12.2 0.7 28.0 16.4 19.4 0.1 18.7 1.2 0.5 0.2

our method achieves a relative mAP gain of 53% over the second-best method
(PL [19]). We attribute such remarkable improvement to the fact that our ap-
proach addresses the zero shot learning problem by augmenting the visual fea-
tures. In contrast, previous approaches such as SB [3], DSES [3], PL [19] map
visual features to the semantic space that limits their flexibility to learn strong
representations mainly due to the noise in semantic domain. In comparison, our
approach helps in reducing the biases towards the seen classes during training,
avoids unseen-background confusion, and minimizes the hubness problem.

In Fig. 2, we further show comparisons for ZSD recall@100 rates by varying
the IoU. Note that the compared methods in Fig. 2 use additional information in
the form of textual description of concepts instead of a single-word class name.
Even though, our proposed method uses much simpler semantic information
(only semantic vectors for class labels), the results in Fig. 2 indicate that our
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Fig. 2. Comparison of SAN [2], SB/DES/LAB [3], ZSDTD [5], GTNet [18] in terms of
Recall@100 rates for different IoU settings on MSCOCO dataset. The proposed method
consistently shows improved performance over existing state-of-the-art methods.

method consistently outperforms several established methods by a large margin
for a variety of IoU settings. This comparison includes a recent generative ZSD
approach, GTNet [18], that employs an ensemble of GANs to synthesize features.

(b) GZSD results: Our GZSD results in Table 1 also achieve a significant boost in
performance. The generated synthesized features allow training of the detection
model in a supervised manner. In this way, unseen instances get equal emphases
as seen class objects during training. We note that the GZSD setting is more
challenging and realistic since both seen and unseen classes are present at infer-
ence. An absolute HM mAP gain of 6.9% for GZSD is therefore quite significant
for our proposed method.

Compared with the baseline, which projects visual features to semantic space,
our results demonstrate the effectiveness of augmenting the visual space, and
learning a discriminative classifier for more accurate classification. These base-
line results further indicate the limitations of mapping multiple visual features
to a single class-semantic vector. One interesting trend is that the baseline still
performs reasonably well according to the RE measure (in some cases even above
the previous best methods), however the considerably low mAP scores tell us
that the inflated performance from the baseline is prone to many false positives,
that are not counted in the RE measure. For this reason, we believe the mAP
scores are a more faithful depiction of ZSD methods.

(c) Class-wise performances: Our class-wise AP results on MSCOCO in Table 2
show that the performance gain for the proposed method is more pronounced
for ‘train’, ‘bear ’ and ‘toilet ’ classes. Since our feature generation is conditioned
upon class-semantics, we observe that the feature synthesis module generates
more meaningful features for unseen classes which have similar semantics in the
seen data. The method shows worst performance for classes ‘parking-meter ’,
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Zero Shot Detection (ZSD)

Generalized Zero Shot Detection (GZSD)

Fig. 3. Qualitative results on MSCOCO for ZSD (top 2 rows) and GZSD (bottom 2
rows). Seen classes are shown with green and unseen with red. (best seen when zoomed)

‘frisbee’, ‘hot dog ’ and ‘toaster ’. These classes do not have close counterparts
among the seen classes, which makes their detection harder.

(d) Qualitative results: Fig. 3 shows some examples of detections from our
method both for ZSD (top 2 rows) and GZSD (bottom 2 rows) settings. The
visual results demonstrate the effectiveness of the proposed method in localizing
unseen objects, and its capability to detect multiple seen+unseen objects with
challenging occlusions and background clutter in real-life images.

PASCAL VOC results: In Table 3, we compare different methods on PAS-
CAL VOC dataset based on the setting mentioned in [4]. The results suggest
that the proposed method achieves state-of-the-art ZSD performance. A few ex-
amples images on PASCAL VOC shown in Fig. 5 demonstrate the capability
of our method to detect multiple unseen objects in real-life scenarios. The re-
sults in Table 3 further indicate that in addition to the unseen detection case, our
method performs very well in the traditional seen detection task. We outperform
the current best model PL [19] by a significant margin, i.e., 73.6% vs. 63.5% for
seen detection and 64.9% vs. 62.1% for unseen detection. A t-SNE visualization
of our synthesized features for unseen classes is shown in Fig. 4. We observe that
our generator can effectively capture the underlying data distribution of visual
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Table 3. mAP scores on PASCAL VOC’07. Italic classes are unseen.
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Ours 73.6 64.9 83.0 82.8 75.1 68.9 63.8 69.5 88.7 65.1 71.9 56.0 82.6 84.5 82.9 53.3 74.2 75.1 59.6 92.7 62.3 45.2

Car
Dog
Sofa
Train

Airplane
Cat
Hair Drier
Toilet
Train
Snowboard
Suitcase
Toaster
Parking Meter
Frisbee
Sandwich
Mouse
Bear
Fork
Hot Dog

Fig. 4. A t-SNE visualization of synthesized features by our approach for unseen classes
on PASCAL VOC dataset (left) and MSCOCO dataset (right). The generated features
form well-separated and distinctive clusters for different classes.

features. The similar classes occur in close proximity of each other. We further
observe that the synthesized features form class-wise clusters that are distinctive,
thus aiding in learning a discriminative classifier on unseen classes. Synthesized
features for similar classes (bus and train) are however sometimes confused with
each other due to high similarity in their semantic space representation.

Fig. 5. Example unseen detections on PASCAL VOC. (best seen when zoomed).

ILSVRC DET 2017 results: In Table 4, we report ZSD results on ILSVRC
Detection dataset based on the settings mentioned in [2]. We can notice from
the results that, in most of the object categories, we outperform our closed
competitor SAN [2] by a large margin. Note that for a fair comparison, we
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Table 4. ZSD class-wise AP for unseen classes of ILSVRC DET 2017 dataset.

m
e
a
n

p
.b

ox

sy
ri

n
g
e

h
a
rm

o
n
ic

a

m
a
ra

ca

b
u
rr

it
o

p
in

ea
p
p
le

el
ec

tr
ic

-f
a
n

iP
o
d

d
is

h
w

a
sh

er

ca
n
o
p

en
er

p
la

te
-r

a
ck

b
en

ch

b
ow

ti
e

s.
tr

u
n
k

sc
o
rp

io
n

sn
a
il

h
a
m

st
er

ti
g
er

ra
y

tr
a
in

u
n
ic

y
cl

e

g
o
lf

b
a
ll

h
.b

a
r

Baseline 12.7 0.0 3.9 0.5 0.0 36.3 2.7 1.8 1.7 12.2 2.7 7.0 1.0 0.6 22.0 19.0 1.9 40.9 75.3 0.3 28.4 17.9 12.0 4.0
SAN (Lmm) 15.0 0.0 8.0 0.2 0.2 39.2 2.3 1.9 3.2 11.7 4.8 0.0 0.0 7.1 23.3 25.7 5.0 50.5 75.3 0.0 44.8 7.8 28.9 4.5

SAN[2] 16.4 5.6 1.0 0.1 0.0 27.8 1.7 1.5 1.6 7.2 2.2 0.0 4.1 5.3 26.7 65.6 4.0 47.3 71.5 21.5 51.1 3.7 26.2 1.2

Ours 24.3 6.2 18.6 0.7 5.9 50.9 8.2 2.1 55.3 11.5 14.3 3.0 15.4 2.7 11.4 41.9 16.4 79.6 67.6 14.5 69.5 31.8 30.7 0.1

do not compare our method with reported results in [5,18], since both these
methods use additional information in the form of textual description of class-
labels. It has been previously shown in [5] that the additional textual description
information boosts performance across the board. For example, in their paper,
SAN [2] reports an mAP of 16.4 using single-word description for class-labels,
whereas, [5] reports an mAP of 20.3 for SAN using multi-word textual description
of class-labels. Our improvements over SAN again demonstrates the significance
of the proposed generative approach for synthesizing unseen features.

Distinct Foreground Bounding Boxes: The seen visual features are ex-
tracted based upon the anchor bounding boxes generated by using the ground-
truth bounding boxes for seen classes in X s. We perform experiments by chang-
ing the definition of background and foreground bounding-boxes. Specifically,
we consider two settings: (a) Distinct bounding-boxes: foreground object has a
high overlap (IoU ≥ 0.7), and the background has minimal overlap with the ob-
ject (IoU ≤ 0.3), and (b) Overlapping bounding-boxes: foreground has a medium
overlap with the object of interest (IoU > 0.5), and some background boxes have
medium overlap with the object (IoU < 0.5). We achieve an mAP of 19.0 vs 11.7
for distinct and overlapping boundig boxes respectively on MSCOCO 65/15 split.
This suggests that the generative module synthesizes the most discriminant fea-
tures when the bounding-boxes corresponding to the real visual features have a
high overlap with the respective object and minimal background.

5 Conclusion

The paper proposed a feature synthesis approach for simultaneous localization
and categorization of objects in the framework of ZSD and GZSD. The pro-
posed method can effectively learn the underlying visual-feature data distribu-
tion, by training a generative adversarial network model conditioned upon class-
semantics. The GAN training is driven by a semantic-space unseen classifier,
a seen classifier and a diversity enhancing regularizer. The method can there-
fore synthesize high quality unseen features which are distinct and discriminant
for the subsequent classification stage. The proposed framework generalizes well
to both seen and unseen objects and achieves impressive performance gains on
a number of evaluated benchmarks including MSCOCO, PASCAL VOC and
ILSVRC detection datasets.
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22. Joulin, A., Grave, É., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers. (2017)
427–431

23. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in neural information processing sys-
tems. (2017) 5767–5777

24. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Im-
proved techniques for training gans. In: Advances in neural information processing
systems. (2016) 2234–2242

25. Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative
adversarial networks for diverse image synthesis. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. (2019) 1429–1437

26. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV, Springer
(2014) 740–755

27. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115 (2015) 211–252

28. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International journal of computer vision 88
(2010) 303–338

29. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

30. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the International
Conference on Language Resources and Evaluation (LREC 2018). (2018)


	Synthesizing the Unseen for Zero-shot Object Detection

